Skip to content

lit_mlflow.logger

docs module lit_mlflow.logger

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import logging
import os
from typing import Any, Literal

from lightning.fabric.loggers.logger import Logger, rank_zero_experiment
from lightning.fabric.utilities.rank_zero import (
    rank_zero_info,  # type: ignore  # noqa: PGH003
    rank_zero_only,
    rank_zero_warn,  # type: ignore  # noqa: PGH003
)
from lightning.pytorch.loggers import MLFlowLogger
import mlflow
from mlflow.tracking import MlflowClient
from mlflow.utils.databricks_utils import get_databricks_run_url, is_in_databricks_notebook

from lit_mlflow.utils.dbx import get_experiment_id, is_in_databricks, patch_dbx_credentials


class DbxMLFlowLogger(MLFlowLogger):
    def __init__(
        self,
        experiment_name: str = "lightning_logs",
        run_name: str | None = None,
        tracking_uri: str | None = mlflow.get_tracking_uri(),  # os.getenv("MLFLOW_TRACKING_URI"),
        tags: dict[str, Any] | None = None,
        save_dir: str | None = "./mlruns",
        log_model: Literal[True, False, "all"] = False,
        prefix: str = "",
        artifact_location: str | None = None,
        run_id: str | None = None,
    ):
        super().__init__(
            experiment_name, run_name, tracking_uri, tags, save_dir, log_model, prefix, artifact_location, run_id
        )
        if not is_in_databricks():
            rank_zero_warn(f"You are running `{self.__class__.__name__}` outside of Databricks.")
        else:
            self._fix_logging()
            if patch_dbx_credentials():
                client = self.experiment
                if client:
                    rank_zero_info("MLflow client created.")
                else:
                    rank_zero_warn("Could not retrieve the MLflow client.")
            else:
                rank_zero_warn("Could not patch Databricks credentials.")

    def _get_url(self) -> str | None:
        run_url = get_databricks_run_url(self._tracking_uri or "databricks", self.run_id or "")
        return run_url

    @rank_zero_only
    def _fix_logging(self) -> None:
        """Fix the logging level of the Py4J gateway to ERROR to prevent log spam."""
        logging.getLogger("py4j.java_gateway").setLevel(logging.ERROR)

    @property
    @rank_zero_experiment
    def experiment(self) -> MlflowClient:
        if is_in_databricks_notebook():
            self._experiment_id = get_experiment_id(None)
        return super().experiment

    @property
    def run_id(self) -> str | None:
        _ = self.experiment
        active_run = mlflow.active_run()
        if active_run:
            self._run_id = active_run.info.run_id or ""
        return self._run_id

    # @rank_zero_only
    # def finalize(self, status: str = "success") -> None:
    #     final = super().finalize(status)
    #     rank_zero_info(f"MLflow run URL: {self._get_url()}")
    #     return final